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Abiotic stresses are a global environmental 
problem. It is common in all environments and 
the adverse effects are best documented in 
agricultural systems where abiotic stresses can 
cause losses in  the yield of food crops up to 70 
% (Mantri et al. 2012). Drought (Pardo 2010; 
Cramer et al. 2011), temperature (Weis and 
Berry 1988), salinity (Munns and Tester, 
2008), pH (Hinsinger et al. 2003) and nutrient 
deficiency or excess, all affect the plants health 
negatively. It has been reported that the abiotic 
stresses generate the reactive oxygen species in 
plant cell and cause oxidative stress in plant (Li 
et al. 2018). They cause damage to the DNA 
and harm the repair system of DNA, hamper 
the functional integrity of plasma membrane 
and disturb the activity and function of protein 
(Tamás et al. 2014). Alternatively, plants also 
develop several structural, morphological, 
physiological and biochemical modifications 
to avoid and minimize the stress caused by 
various abiotic stresses (Ruiz-Lozano et al. 
2006, Fusconi and Berta 2012, Patakas 2012). 
There are various sustainable efforts to 
alleviate the stress caused by abiotic factors. In 
this context, the association of arbuscular 
mycorrhizal (AM) fungi with plant roots has 
been reported to improve growth and yield of 
the plant under stressful conditions (Abdel 
Latef 2011, 2013; Abdel Latef and Chaoxing 
2011a, 2014; Jeffries and Barea 2012; 
Hajiboland 2013, Akhtar et al. 2019). 
AM fungi are obligate biotrophs, belonging to 
the phylum Glomeromycota (Schüßler et al. 
2001, Kehri et al. 2018) form an association 
with the roots of the higher plants. AM fungi 

have been reported from the Devonian period 
(Taylor et al. 1995, Phipps and Taylor 1996). In 
association with the roots of the host plant, AM 
fungi produce various types of structures such 
as hyphae, arbuscules, vesicles and spores 
(Plate 1). Hyphae of AM fungi colonize the 
cortical cells of root and form highly branched 
structures called arbuscules inside the host 
cells. Arbuscules are considered as the main 
site of nutrient exchange (Balestrini et al. 
2015). AM fungi improve the growth of the 
host plant through increased nutrient 
(phosphate and nitrogen) and water uptake in 
exchange for photosynthetic product from their 
host (Smith et al. 2010,  Gianinazzi et al. 2010; 
Baum et al. 2015). Apart from an increased 
nutrient status, AM fungi-colonized plants 
often show improved root growth and 
branching as compared to non-colonized plant 
(Gamalero et al. 2010, Orfanoudakis et al. 
2010; Gutjahr and Paszkowski 2013) (Plate 2). 
The extraradical AM fungal mycelium can 
acquire nutrients from soil volumes that are 
inaccessible to roots (Plare 3) (Smith et al. 
2000) as AM fungal hyphae are considerably 
thinner than roots and are therefore able to 
penetrate through smaller pores (Allen 2011). 
Besides improved nutrient and water supply, 
AM association also improved stress tolerance 
in plants (Augé 2001, 2004; Porcel et al. 2011; 
Augé et al. 2015, Pozo and Azcón-Aguilar, 
2007). There have been various reports on the 
effect of AM fungi in alleviating abiotic stress 
in plants (Augé 2001, Ruiz-Lozano 2003, 
Ruiz-Lozano and Aroca 2010, Bárzana et al. 
2012, 2015; Ruiz-Lozano et al. 2012, Calvo-
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Polanco et al. 2014, Saia et al. 2014, Augé et al, 
2015, Sánchez-Romera et al. 2015). AM fungi 
are reported to alleviate heavy metal toxicity in 
the host plants (Göhre and Paszkowski, 2006; 
Lingua et al. 2008, Cornejo et al. 2013,  
Tamayo et al. 2014,  Meier et al. 2015,  Akhtar 
et al. 2020). Furthermore,  AM fungi are of 
great ecological significance (Xie et al.  2014) 
as they improve the plant growth, uptake of 
nutrition and eventually improve the 
productivity under normal as well as stressful 
environmental conditions (Abdel Latef 2011, 
2013; Abdel Latef and Chaoxing 2011a, 2014; 
Jeffries and Barea 2012, Hajiboland, 2013; 
Abdel Latef and Miransari 2014).

AM fungi versus Salinity stress: Salinization 
of soil is a serious land degradation problem 
and is increasing in many parts of the world 
(Giri et al. 2003, AlKaraki 2006,  Sheng et al. 
2008). Saline soils occupy 7 % of the earth's 
land surface (Ruiz-Lozano et al. 2001) and 50 
% loss of arable land will be there by the middle 
of the 21st century (Wang et al. 2003). 
According to Sheng et al. (2008) out of 1.5 
billion hectares of cultured land around the 
world about 5 % is affected by salinity. 
Scientists say there is no early solution to soil 
salinity and waterlogging.  Only 800 to 1,000 
hectares can be reclaimed in a year (Plate 4).
Excessive salts in soil reduce plant water and 
nutrient uptake and disrupt the distribution of 
ions. Such drastic changes result in stunted 
plant growth and development and can lead to 
death of the plant. Higher accumulation of salts 

+ −like Na  and Cl  in plant tissues leads to 
oxidative damage (also considered as 
secondary stress), affecting integrity of plant 
membranes (damage to lipids, proteins and 
nucleic acids), impairing activities of 
biocatalysts and functioning of photosynthetic 
apparatus, which is ascribed to the deleterious 
effects of the reactive oxygen species (ROS) 
often generated by salt stress (Zhu 2001, 
Kumar et al. 2015). The rhizosphere, an area in 
the immediate vicinity of the plant root is 
predominantly affected by the activities of soil 
microbes. These microbes viz., nitrogen-fixing 

bacteria, phosphate solubilizers, and 
mycorrhizae can be useful, which alleviate 
detrimental effects of biotic and abiotic 
stresses.
AM fungi have been shown to promote plant 
growth and salinity tolerance by many 
researchers. They promote salinity tolerance 
by utilizing various mechanisms, such as: (a) 
enhancing nutrient uptake; (b) producing plant 
growth hormones; (c) improving rhizospheric 
and soi l  condit ions;  (d)  improving 
photosynthetic activity or water use efficiency 
(e) accumulation of compatible solutes, and (f) 
production of higher antioxidant enzymes. As a 
result, AM fungi are considered suitable for 
bioamelioration of saline soils.
AM fungal activity increases the phosphorus 
concentration available in the rhizosphere, 
lower the root zone pH by selective uptake of 

+ +
NH  (ammonium-ions) and by releasing H  4

ions, decreased soil pH, increases the solubility 
+of phosphorus precipitates, the hyphal NH  4

uptake also increases the nitrogen flow to the 
plant as the soil's inner surfaces absorb 
ammonium and distribute it by diffusion.
Application of AM fungi can result in a more 
efficient assimilation of N in the host plants, 
due to the (a) nitrate assimilation in the extra 
radical mycelia through the activity of nitrate 
reductase located in the arbuscular 
containing cells (b) increased production of 
enzymes controlling the primary nitrogen 
fixation in the extra-radical mycelia, (c) 
decreasing the toxic effects of Na ions by 
reducing its uptake and this may indirectly 
help in maintaining the chlorophyll content 
of the plant  Improved P uptake by AM 
fungus in plants grown under saline 
conditions may contribute to the integrity 
maintenance of vacuolar membrane and 

+ facilitate the Na ions compartmentalization 
+

within vacuoles. This prevents Na  ions from 
interfering in metabolic pathways of growth, 
thereby reducing the negative impacts of 
salinity.
Mycorrhizal fungi can enhance K absorption 
under saline conditions and prevent the 
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Plate 1 : VAM Fungal Structures, Spores, Vesicles and Arbusvules

Plate   2 : Improved root groth un mycorrhizal plants than non-mycorrhizal plants

Plate  3 :The ectramatrical AM fyngal myceliu, acquiring nutrients from soil volime that is unaccessible to roots
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translocation of Na to shoot tissues. Higher K 
accumulation by mycorrhizal plants in a saline 
soil could be beneficial by maintaining a high 

+ +K /Na  ratio and by influencing the ionic 
balance of the cytoplasm or Na efflux from 
plants. Magnesium is a macronutrient and 
forms the integral part of the chlorophyll 
molecule. Mycorrhizal fungi can increase 
chlorophyll concentration, by increasing the 

2+uptake of Mg  by the host plant. This suggests 
that salt interferes less with chlorophyll 
synthesis in mycorrhizal than nonmycorrhizal 

2+
plants. The enhanced Mg  uptake can increase 
the chlorophyll concentration and hence 
improve photosynthetic efficiency and plant 
growth. In saline regions, the high 

-concentration of Cl may limit plant growth and 
can be toxic to crop plants. Such a stress can be 
alleviated to some extent by using AM fungi, 

which can reduce the uptake of Cl ions. In 
mycorhizal plants, the ability of the host plant 
increases and hence compartmentalize higher 

- 
rate of Cl in the vacuoles, thereby preventing 
the ions from interfering with the metabolic 
pathways in the plant. Under salinity stress, the 
overproduction of different types of 
compatible organic solutes by plant increases. 
Generally, they protect plants from stress. 
Some  o f  these  so lu t e s  a re  ca l l ed  
osmoprotectants because they protect cellular 
components from dehydration damage. These 
solutes include proline, soluble sugars, 
polyols, trehalose, and quaternary ammonium 
compounds (QACs) such as proline-betaine, 
alanine-betaine, glycine-betaine, pipecolate-
betaine, and hydroxyproline-betaine. 
Production of different solutes, plant 
hormones, antioxidant products, the adjusted 

Plate 4. Showing various saline fields. a and b: Salinity stressed cultivated fields, c: Saline/alkaline field of our country, 
and d: A farmer in debt

J. Indian bot. Soc.  Sp. Issue Vol. 100(A) 2020:222AM fungi in alleviating the abiotic stress



+ +rate of K /Na , extensive network of the 
mycorrhizal plant roots, and enhanced nutrient 
uptake are all among the processes that make 
the plant to survive under stress.
A number of AM fungi have been reported in 
saline soils (Khan 1974,  Allen and Cunningam 
1983; Pond et al. 1984, Rozema et al. 1986; 
Sengupta and Chaudhuri 1990, Carvalho et al. 
2001, Hilderbrandt et al. 2001,  Harisnaut et al. 
2003, Yamato et al. 2008). Salinity stress 
sometimes reduce the average density of AM 

spores (Barrow et al. 1997, Carvalho et al. 
2001). Moreover, Aliasgharzadeh et al. (2001) 
reported the Glomus intraradices, G. versiform 
and G. etunicatum was most predominant 
species of AM fungi in the severely saline soils 
of the Tabriz plains. They further reported that 
the number of AM fungal spores did not 
significantly decrease with the salinity. 
However, Wilde et al. (2009) reported that 80 
%, on average, AM spores belonged to Glomus 
geosporum. However, Fuzy et al. (2008) 

Plate 5: Showing various sources of heavy metal pollution in the agricultural soils. a-c: heavy metal contaminated 

effluent used for irrigation d-f: illegal source of heavy metal contamination
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reported that an isolate of G. geosporum does 
not confer salt tolerance in plants. Tian et al. 
(2004) reported that G. mosseae isolated from 
salt stress soil had an inferior ability to improve 
salt stress in cotton. Porras-Soriano et al. 
(2009) tested the efficacy of Glomus mosseae, 
G. intraradices and G. claroideum to alleviate 
salinity stress and they reported that G. 
mosseae shows the best result among the tested 
spp. and improves the performance of olive tree 
against the detrimental effects of salinity. Salt 
stress, also affects the growth of AM fungi. It 
can inhibit the AM colonization, spore 
germination and hyphae growth. Various 
researchers have reported the deleterious 
effects of salt stress on microbes (Hirrel 1981, 
Estaun 1989, McMillen et al. 1998, Jahromi et 
al. 2008). In the presence of NaCl AM 
colonization in the roots of plant was reduced 
(Hirrel and Gerdemann, 1980; Ojala et al. 
1983, Menconi et al. 1995, Poss et al. 1985; 
Rozema et al. 1986, Duke et al. 1986, Giri et al. 
2007, Juniper and Abbott  2006, Sheng et al.  
2008) indicating that in the presence of salt, 
growth of AM fungi reduce (Tian et al. 2004; 
Sheng et al. 2008). It has also been reported that 
suppression of AM fungi under salt stress also 
depends on the on the timing of the 
observation, as there is more inhibition in the 
early than in the later stages of colonization 
(McMillen et al. 1998). Moreover, the AM 
association with plant roots may also be 
influenced by other factors such as 
topographical and root biochemical factor and 
phenology of host plants (Wilson and Hartnett, 
1998; Gadkar et al. 2001, Carvalho et al. 2001). 
AM fungi are also known to colonize the plant 
that grown in salinity and such plant are called 
halophytes (Khan 1974, Hoefnagels et al. 
1993, Brown and Bledsoe 1996). Several 
researchers have reported that AM inoculated 
plants grow better than non-inoculated plants 
under salt stress (Al-Karaki 2000, Cantrell and 
Linderman 2001, Giri et al. 2003, Sannazzaro 
et al. 2007, Zuccarini and Okurowska 2008).  
AM colonization improves the growth of the 
plant and it has been observed in the seedling of 
Acacia nilotica that show higher root and shoot 

dry weight than the non-colonized seedlings 
(Giri et al. 2007). Similarly, Colla et al. (2008) 
reported improved growth, yield, water status, 
nutrient content and quality of fruits of 
Cucurbita pepo plants colonized by Glomus 
intraradices under salinity stress. AM fungi 
have been found to improve salt tolerance in 
different plant species such as tomato, 
cucumber, maize, lettuce, clover, fenugreek, 
sesbania and acacia (Ruiz-Lozano et al. 1996, 
Al-Karaki 2000, Feng 2002, Giri et al. 2003, 
Sharifi et al. 2007. Giri and Mukerji 2004, 
2007). The application of AM fungi offers a 
cheaper and cost-effective alternative to 
counteract the problem of stress. Hajiboland et 
al. (2010) studied the effect of R. intraradices 
on the growth of tomato plants under low, 
medium and high salinity stress using salt-
sensitive and salt-tolerant genotypes. Further, 
they reported that inoculation of R. 
intraradices plays an important role in 
alleviating salt stress by increasing P, Ca and K 
uptake and Ca/Na and K/Na ratios, while also 
promoting carbon assimilation by increasing 
the stomatal conductance. Improved growth of 
AM colonized plant is due to enhanced P 
acquisition nutrition (Plenchette and Duponnis 
2005; Sharifi et al. 2007). Under normal as 
well as salinity stress conditions AM fungi 
reported to enhanced synthesis of chlorophyll 
p igments  in  Solanum lycopers icum  
(Hajiboland et al. 2010). Furthermore, 
inoculation of AM fungi reported to improve 
the functioning of photosystem (PSI and PSII) 
and boost the chlorophyll and carbonic 
anhydrase content (Talaat and Shawky 2014).  
In addition to improved mineral nutrition and 
photosynthetic capacity AM fungi also 
improves the stomatal conductance, root 
hydraulic conductivity, water use efficiency, 
accumulation of enzymatic and non-enzymatic 
antioxidants, compatible organic solutes (help 
in detoxification of damaging reactive oxygen 
species), and osmotic adjustment (protect 
integrity of cell membrane and organelle and 
stabilize proteins) (Sharifi et al. 2007,  Sheng 
et al. 2008; Evelin et al. 2009, Porcel et al. 
2012, Kumar et al. 2015, Auge et al. 2014; 
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Latef et al. 2016,  Saxena et al. 2017,  Atakan et 
al. 2018). Moreover, Daei et al. (2009) and 
Mardukhi et al. (2015) concluded that the 
adverse effects of salt could be nullified if 
correct combination of AM fungi and plant 
genotype are used. 
AM fungi versus Heavy Metal Stress: Heavy 
metals occur naturally in the soil and are 
constantly being added to the soil by various  
sources (use of chemical fertilizers and 
pesticides, application of sewage and industrial 
effluents, production of batteries and mining 
and smelting of metals) (Shen 2002) (Plate 5). 
Heavy metals are nonbiodegradable, persistent 
inorganic chemical constituents whose atomic 

-3mass is over 20, density higher than 5 g/cm . 
They are able to form sulfides and are 
cytotoxic, genotoxic and mutagenic, affects 
humans or animals and plants. Heavy metals 
influence food chains, soil, irrigation or potable 
water, aquifers and surrounding atmosphere.
Heavy metals at toxic level hamper normal 
plant functioning, act as an impediment to 
metabolic processes, cause disturbance or 
displacement of building blocks of protein 
structure, hinder functional groups of 
important cellular molecules, disrupt 
functionality of essential  metals in 
biomolecules  (such as pigments or enzymes) 
adversely affect the integrity of the cytoplasmic 
membrane (result in the repression of vital 
events in plants such as photosynthesis, 
respiration, and enzymatic activities). Heavy 
metals at toxic levels have the capability to 
interact with several vital cellular biomolecules 
such as nuclear proteins and DNA, leading to 
excessive augmentation of reactive oxygen 
species (ROS). This would inflict serious 
morphological, metabolic, and physiological 
anomalies in plants ranging from chlorosis of 
shoot to lipid peroxidation and protein 
degradation. 
Elevated levels of heavy metals increase 
generation of reactive oxygen species (ROS) 
such as superoxide free radicals, hydroxyl free 
radicals, or non-free radical species (molecular 
forms) such as singlet oxygen and hydrogen 
peroxide (H O ) Increase cytotoxic compounds 2 2

like methylglyoxal (MG), which can cause 
oxidative stress via disturbing the equilibrium 
between pro-oxidant and antioxidant 
homeostasis within the plant cells, cause 
multiple deteriorative disorders such as, 
oxidation of protein and lipids, ion leakage, 
oxidative DNA attack, redox imbalance, 
denature of cell structure and membrane, 
ultimately result in activation of programmed 
cell death (PCD) pathways.
Increase of heavy metals in the soil may 
changes the physico-chemical properties of 
soil (Koomen et al. 1990) thereby enhanced the 
bioavailability of metals (Birch and Bachofen, 
1990). Heavy metals are non-degradable in 
nature and its presence at higher concentration 
in soils adversely affect growth and 
development of plants by inhibiting the 
enzymatic activities (Foy et al. 1978) thereby 
the productivity (Pandolfini et al. 1997, Keller 
et al. 2002, Voegelin et al. 2003, Kabata- 
Pendias and Mukherjee 2007). Alternatively, 
heavy metals could also be toxic for soil 
microorganisms (Chaudri et al. 1993, McGrath 
et al. 1995, Dai et al. 2004). Nevertheless, 
heavy metals exposure may result in the 
development of metal tolerant/resistant AM 
fungi. It has been reported by various authors 
that AM isolates, particularly found in heavy 
metal contaminated soils can tolerate and 
accumulate heavy metal (Gildon and Tinker 
1981 Weissenhorn et al. 1993, Joner and 
Leyval 1997, Smith and Read 1997, Zhu et al. 
2001, Jamal et al. 2002, Akhtar et al. 2019). 
AM fungi have also been associated with 
metallophyte (Viola calaminaria) plants 
(Tonin et al. 2001). Phytoremediation is one of 
the best strategies to remediate heavy metal 
contaminated soil by using AM fungi (Joner 
and Leyval, 2001). This method is ecofriendly 
that uses plants to remove the heavy metals 
from contaminated soil to level that makes 
them available for private and public use. Khan 
et al. (2014) conducted an experiment to 
determine the role of AM fungi in 
phy to remedia t ion  o f  heavy  meta l s  
contaminated soil and concluded that AM 
fungi inoculated plants show better result as 
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compare to non-inoculated plants. Similarly, 
Yang et al. (2016), studied the role of AM fungi 
for the phytoremediation of lead (Pb) and 
concluded that AM colonized plant accumulate 
more PB in root and shoot as compare to non-
inoculated plant. Moreover, Kaur and Garg 
(2013), reported the negative effects of Zn and 
Cd stresses on plants growth and its 
metabolism. Further, they reported that AM 
inoculation improved metal tolerance and 
uptake of nutrients in plant under stress 
condition.
AM fungi plays an important role in alleviation 
of heavy metal toxicity in plants (Zhang et al. 
2010, Garg and Bhandari 2014, Miransari, 
2017). AM fungi could protect plants against 
harmful effects of heavy metals by several 
mechanisms. Zhu et al. (2001) reported the 
immobilization of metals in the fungal 
biomass. According to Joner et al. (2000) AM 
fungi binds the heavy metals in their fungal 
structures which serves as a biological barrier. 
AM fungi produce glomalin (insoluble 
glycoprotein) a soil protein that can bind heavy 
metal beyond the plant rhizosphere (Gonzalez- 
Chavez et al. 2004; Gohre and Paszkowski 
2006). Gonzalez- Chavez et al. (2004) reported 
that 1 g of glomalin could extract up to 4.3 mg 
Cu, 0.08 mg Cd and 1.12 mg Pb from polluted 
soils. Structures of AM fungi particularly, 
vesicles provide an extra detoxification site for 
storing toxic compounds. AM fungi alleviates 
the metal toxicity in plants by altering the 
physiology and metabolism of the plant (Paradi 
et al. 2003). AM association with plants did not 
influence shoot concentration of heavy metals, 
but concentration in roots was increased in AM 
colonized plants (Joner and Leyval 1997). 
Beside this there are various factors such as AM 
symbiont, inherent heavy metal-uptake 
capacity of plants and soil absorption or 
desorption characteristics also influence 
heavy-metal uptake in plants. 
Principlal mechanisms adopted by mycorrhizal 
fungi to cancel out impacts of HM stress on 
plants include (i) acting as a barrier by 
depositing metals within cortical cells, (ii) 
binding metals to cell wall or mycelium as well 

as sequestering them in their vacuole or other 
organelles (iii) releasing heat-shock protein 
and glutathione, (iv) precipitating or chelating 
metals in the soil matrix via producing 
glycoprotein or making phosphate-metal 
complexes inside the hyphae, and (v) reducing 
the strength of metals by heightened root and 
shoot growth (vi) Metallothionines like 
polypeptides are known to cause Cd and Cu 
detoxification in AM fungal cells. (vii) There 
are also some reports of expression of genes in 
AM plants encoding proteins metallothionein, 
heat shock protein, Glutathione-S-transferase 
in response to metallic stress. This indicates 
that proteins of these expressed genes may help 
in the immobilization of toxic heavy metals in 
plant rhizosphere.

AM fungi and Drought Stress:Drought is a 
constant period of dry condition and becoming 
a global environmental problem (Piao et al. 
2010, Trenberth et al. 2014, Mathur et al. 
2018). The main cause of drought is climatic 
alteration, i.e., escalating temperature that 
changed the soil moisture. Due to the 
unavailability of water for plant net primary 
productivity was decrease (Moussa and Abdel-
Aziz 2008, Hasanuzzaman et al. 2013) and the 
plant suffers from oxidative stress (Impa et al. 
2012, Hasanuzzaman et al. 2013). There are 
various reports on AM fungi improves the 
growth of plants under drought conditions 
(Baum et al. 2015, Zhao et al. 2013, Bowles et 
al. 2018). It has been reported that AM fungi 
can improves the growth of the plant by 
improving the root length, leaf area, biomass 
production, and uptake of essential nutrients 
under drought condition (Al-Karaki et al. 
2004, Gholamhoseini et al. 2013, Kapoor et al. 
2013). AM inoculation also reported to 
enhance the formation of extensive hyphal 
networks which improves the water uptake 
capacity (Miransari 2010, Gholamhoseini et 
al. 2013, Gong et al. 2013, Pagano 2014).  
There are various physiological and 
biochemical mechanisms including (a) uptake 
and transfer of water and nutrients, (b) 
improved osmotic adjustment, (c) protection 
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against oxidative damage , (d) greater leaf 
water potential, (e) improved gas exchange, (f) 
accumulation of compatible solutes 
(osmolytes) ,  (g)  increased stomatal  
conductance, transpiration and photosynthetic 
rates (Rapparini and Peñuelas 2014, Lee et al.  
2012, Gholamhoseini et al. 2013, Abbaspour et 
al. 2012, Baslam and Goicoechea 2012, 
Yooyongwech et al. 2016, Augé et al. 2015; 
Pedranzani et al. 2016, Duc et al. 2018). AM 
fungi modify the hormonal level such as 
strigolactones, jasmonic acid (JA) and abscisic 
acid (ABA) in the host plant under drought 
stress condition (Fernández-Lizarazo et al. 
2016). Xu et al. (2018) reported that in 
Solanum lycopersicum, inoculation of AM 
fungi enhanced the expression of 14-3-3 genes 
(TFT1-TFT12) involve in ABA signaling 
pathway. ABA also influence the conductance 
of stomata and other physiological process in 
plants raised under drought stress (Doubková 
et al. 2013). Additionally, the uptake of water 
by root from soil and its circulation in different 
part of plant is regulated and facilitated by 
water channels forming integral membrane 
proteins called aquaporins (Nehls and Dietz 
2014, Quiroga et al. 2017, Xie et al. 2018). 
Aquaporin present in all living cell including 
plant and categories into five subfamilies 
(Maurel et al. 2008; Reuscher et al. 2013; 
Chitarra et al. 2016).  Zea mays plants 
colonized by Glomus intraradices show two 
a q u a p o r i n  g e n e s  ( G i n t A Q P F 1  a n d  
GintAQPF2) in drought exposed plant (Li et al. 
2013). Earlier studies revealed that symbiosis 
of AM fungi regulated the expression of 
aquaporin encoding gene (LeNIP3;1) (Chitarra 
et al. 2016). Contrary to this, in drought 
condition Funneliformis mosseae displayed 
maximum expression of root PtTIP1;2, 
PtTIP1;3, and PtTIP4;1 of Poncirus trifoliata 
L. and while minimum expression of root 
PtTIP2;1 and PtTIP5;1 gene (Jia-Dong et al. 
2019). Aroca et al. (2007) reported the 
expression of GintAQP1 gene was decreased in 
lettuce roots in water deficit condition, even the 
root AM colonization was enhanced. Thus, AM 
fungal association with the host plant either 

increase or decrease the expression of 
aquaporin gene however, the function of 
aquaporin in AM symbioses is still poorly 
understood. 

AM fungi versus Nutritional Deficiency
Nutrient deficiency has been reported to affects 
the plant growth by changes in chemical 
composition, pattern of growth and antioxidant 
activity of plant (Hajiboland 2012). There are 
two types of nutrient; i. micronutrients and ii. 
macronutrients. Micronutrients are required in 
trace amounts for the normal growth and 
development of plant while macronutrients 
required in large amounts. AM fungi play an 
important role in the acquirement of nutrients 
(Marschner and Dell 1994). AM fungi 
enhanced the uptake of micro and 
macronutrients in plant fertilized with low 
level of nitrogen and phosphorous (Baslam et 
al. 2013, Ortas and Ustuner 2014, Xie et al. 
2014). The uptake of phosphorus (P) in plants 
has been well established advantageous effect 
of AM symbiosis (Karandashov and Bucher 
2005, Cardoso and Kuyper 2006, Medina et al. 
2007).  In several plant P transporters (Pi) 
induced in cortical cells colonized by AM fungi 
and thus responsible for the transfer of Pi from 
apoplast to plant cytoplasm (Rausch et al. 
2001, Harrison et al. 2002, Paszkowski et al, 
2002, Nagy et al. 2005). AM fungi also 
ameliorates the negative effect of low pH of 
soil by the uptake of P through extensive 
extraradical hyphae (Muthukumar et al. 2014). 
Likewise, Rohyadi (2008) observed that the 
maize plant colonized by Gigaspora margarita 
show enhance P uptake under acidic 
conditions. Contrary to this, it has also been 
reported that AM fungi not provided benefit to 
plant under acidic condition (Yano and Takaki 
2005, Suri et al. 2011; Muthukumar et al. 
2014). Apart from benefiting effect of P, 
nitrogen (N) is required for the formation of 
amino acids, purines and pyrimidines and thus 
indirectly involved in protein and nucleic acid 
synthesis. AM uptake and assimilate 

4+ 3–
ammonium (NH ),  nitrate (NO ) and amino 
acids in their extraradical hyphae (Ames et al., 

J. Indian bot. Soc.  Sp. Issue Vol. 100(A) 2020:227Harbans Kaur Kehri, Adebola Matthre Omonlyl, Ifra Zoomy,
 Uma Singh and Dheeraj Pandey



1983, George et al. 1992, Johansen et al. 1992, 
1993, 1996; Frey and Schüpp,1993; Bago et al., 
1996; Hawkins et al. 2000; Hodge et al. 2001) 
and translocate it to the different part of plant 
(Hawkins et al. 2000, Azcón et al. 2001; 
Vazquez et al. 2001, Reynolds et al. 2005). AM 
fungi also increase the availability of different 
forms of N to plants (Hodge et al. 2001). Beside 
the uptake of N, and P, AM fungi also enhanced 
the acquisition of several mineral nutrients 
(including Zn Mn, Ca, Fe, Mg and Cu) in plant 
under acidic condition (Wang et al. 1997, 
Mendoza and Borie 1998). AM fungi play a key 
role in improvement of uptake of nutrients 
other than P by altering acquisition mode of the 
absorbing system (Rhodes and Gerdemann 
1980 Gildon and Tinker 1983, Harley and 
Smith 1983). They have been shown to be 
involved in the uptake of Cu, Zn and other trace 
elements having low mobility in soil. They 
have also been shown to increase iron and 
sulphate uptake (Rhodes and Gerdemann 1980 
Ortas et al. 1996, Liu et al. 2002) and other 
nutrients such as Cadmium (Guo et al. 1996). 
Increased uptake of sulphate has been 
attributed to an improved phosphate nutrition 
mediated by AM fungi (Harley and Smith 
1983).

AM fungi and Cold Stress 
Cold stress (temperature <20°C) can also be 
one of the abiotic factors that affects the plant 
growth. Cold stress affect the cellular 
metabolism (Thakur and Nayyar, 2013) and 
reduced the osmotic potential of cell (Wu and 
Zou 2010, Chen et al. 2013), cause 
solidification of plasma membrane (Janicka-
Russak et al. 2012, Chen et al. 2013), generate 
ROS and cause deterioration of protein 
complexes (Liu et al. 2013, Thakur and Nayyar 
2013). Additionallly, clod stress also decreases 
the growth (Sowinski et al. 2005; Rymen et al. 
2007), causes wilting and yellowing of leaf 
(Thakur and Nayyar 2013) by decreasing the 
photosynthetic efficiency of the plant raised in 
cold stress conditions (Farooq et al. 2009, Zhu 
et al. 2010a, Abdel Latef and Chaoxing, 
2011b). Notably, AM fungi improves the plant 

growth under cold stress (Gamalero et al. 2009; 
Liu et al. 2011, Birhane et al. 2012, Chen et al. 
2013, Liu et al. 2013). Beside this, at 5-15°C 
temperature AM colonization, growth of 
extraradical hyphae and symbiotic efficiency 
were suppress (Wu and Zou 2010, Gavito and 
Azón-Aguilar 2012). Zhu et al. (2010a) 
reported that the colonization in root by 
Glomus etunicatum did not affected at 5°C for 
1 week. It has also been reported by several 
authors that at low temperature AM inoculated 
plant show better growth than non-inoculated 
plants (Zhu et al. 2010a, Abdel Latef and 
Chaoxing 2011b; Liu et al. 2011, Chen et al. 
2013). AM colonization enhanced the 
chlorophyll content (Zhu et al. 2010a, Abdel 
Latef and Chaoxing, 2011b), increase the 
protein content (Abdel Latef and Chaoxing 
2011b), provoke the accumulation of 
phenolics, flavonoids and lignin and enhanced 
the antioxidant activity (Zhu et al. 2010, Abdel 
Latef and Chaoxing, 2011b) in AM colonized 
plant under cold stress condition (latef et al. 
2016).
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